题干
题意
找数列中最接近给定值的子串和
思路
直接对原数列使用滑动窗口不行, 因为没有单调性
但是可以考虑到, 子串和就相当于前缀和的差, 可以用前缀和排序, 这样就有单调性了, 每次滑动窗口记录sum = head[r] - head[l]
的值, 当sum < t
就r++
, 当sum > t
就l++
, 这样不断逼近, 每次记录原始的下标, 但是值得注意的是更新l
和r
的时候会产生l >= r
, 需要特别处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
#include <iostream> #include<algorithm> #include<climits> using namespace std;
typedef long long ll; struct Node { ll sum; ll id; Node(){} Node(ll s, ll i): sum(s), id(i) {} bool operator < (const Node& o) const { return sum < o.sum; } };
ll abs(ll aa){return aa < 0 ? -aa : aa;}
const ll MAXN = 100000 + 10; Node head[MAXN]; ll a[MAXN]; ll n, m;
void solve() { head[0].sum = 0; head[0].id = 0; for (ll i = 1; i <= n; ++i) { cin >> a[i]; head[i].sum = head[i-1].sum + (ll)a[i]; head[i].id = i; }
sort(head, head + n + 1);
for (ll qi = 0; qi < m; ++qi) { ll t; cin >> t;
ll l = 0, r = 1; ll bestDiff = LLONG_MAX; ll bestSum = 0; ll bestL = 1, bestR = 1;
while (l <= n && r <= n) { if (l == r) { ++r; continue; }
ll sum = head[r].sum - head[l].sum; ll diff = (sum >= t) ? (sum - t) : (t - sum);
if (diff < bestDiff || (diff == bestDiff && sum < bestSum)) { bestDiff = diff; bestSum = sum; ll id1 = head[l].id; ll id2 = head[r].id; bestL = min(id1, id2) + 1; bestR = max(id1, id2); }
if (sum > t) ++l; else ++r; }
cout << bestSum << ' ' << bestL << ' ' << bestR << '\n'; } }
int main() { ios::sync_with_stdio(false);
while ( (cin >> n >> m) && (n || m) ) { solve(); } return 0; }
|